3
Loading Events
Home Recorded Courses Bayesian Data Analysis (BADAPR)
BADAPR

Bayesian Data Analysis

Bayesian Data Analysis in R – On-Demand Course Using brms

  • Duration: 20 Hours
  • Format: Recorded ‘on-demand’ Format

£350Registration Fee

Register Now

Like what you see? Click and share!

5.0

from 200+ reviews

Course Description

Bayesian methods are now increasingly widely in data analysis across most scientific research fields. Given that Bayesian methods differ conceptually and theoretically from their classical statistical counterparts that are traditionally taught in statistics courses, many researchers do not have opportunities to learn the fundamentals of Bayesian methods, which makes using Bayesian data analysis in practice more challenging. The aim of this course is to provide a solid introduction to Bayesian methods, both theoretically and practically. We will begin by teaching the fundamental concepts of Bayesian inference and Bayesian modelling, including how Bayesian methods differ from their classical statistics counterparts, and show how to do Bayesian data analysis in practice in R. We then provide a solid introduction to Bayesian approaches to these topics using R and the brms package. We begin by covering Bayesian approaches to linear regression. We will then proceed to Bayesian approaches to generalized linear models, including binary logistic regression, ordinal logistic regression, Poisson regression, zero-inflated models, etc. Finally, we will cover Bayesian approaches to multilevel and mixed effects models. Throughout this course, we will be using, via the brms package, Stan based Markov Chain Monte Carlo (MCMC) methods.

What You’ll Learn

During the course will cover the following:

  • Explain the principles of Bayesian data analysis and compare them with classical (frequentist) approaches, identifying where the two perspectives converge and diverge.
  • Apply Bayes’ rule to simple problems in order to build intuition for Bayesian inference and its role in statistical modelling.
  • Conduct Bayesian inference in simple models by specifying likelihoods, priors, and posteriors, and interpret outputs such as posterior distributions, credible intervals, and Bayes factors.
  • Perform Bayesian analysis of normal models (e.g. regression, correlation, t-tests, ANOVA) and recognise parallels and contrasts with classical methods.
  • Implement and evaluate Markov Chain Monte Carlo (MCMC) methods using R and the brms package to fit Bayesian models beyond analytical solutions.
  • Fit and interpret Bayesian linear regression models (including categorical predictors, varying intercepts, and varying slopes) and compare results with classical regression (lm).
  • Extend Bayesian linear models by relaxing distributional assumptions (e.g. non-normal residuals, heteroscedasticity) to create robust models suited to real-world data.
  • Apply Bayesian generalized linear and multilevel models (e.g. logistic, Poisson, zero-inflated, and mixed-effects models) to complex, hierarchical datasets, and evaluate their advantages over classical approaches, particularly with respect to convergence and flexibility.

Course Format

Flexible Learning Structure

Learn through a carefully structured mix of lecture recordings and guided exercises that you can pause, revisit, and complete at your own pace—ideal for busy professionals or those balancing multiple commitments.

Access Anytime, Anywhere

All course content is available on-demand, making it accessible across all time zones without the need to attend live sessions or adjust your schedule.

Independent Exploration with Support

Engage deeply with course topics through self-directed study, with the option to reach out to instructors via email for clarification or deeper discussion.

Comprehensive Learning Resources

Gain full access to the same high-quality materials provided in live sessions, including code, datasets, and presentation slides—all available to download and keep. Please note recordings can only be streamed.

Work With Your Own Data, On Your Terms

Apply what you learn directly to your own data projects as you go, allowing for a personalized and immediately practical learning experience.

Continued Guidance and Resource Access

Receive 30 days of post-enrolment email support and unrestricted access to all session recordings during that time, so you can review and reinforce your learning as needed.

Who Should Attend / Intended Audiences

This course is aimed at anyone interested in learning and applying Bayesian data analysis across the social, life, and physical sciences. No prior experience with Bayesian statistics is required; however, participants should have a basic understanding of core statistical concepts such as generalized linear regression models, statistical significance, and hypothesis testing, as well as familiarity with R, including importing and exporting data, manipulating data frames, fitting basic statistical models, and generating simple exploratory and diagnostic plots.

Equipment and Software requirements

A laptop or desktop computer with a functioning installation of R and RStudio is required. Both R and RStudio are free, open-source programs compatible with Windows, macOS, and Linux systems.

While not essential, using a large monitor—or ideally a dual-monitor setup—can significantly enhance your learning experience by allowing you to view course materials and work in R simultaneously.

All necessary R packages will be introduced and installed during the workshop.

Download R Download RStudio Download Zoom

Dr. Mark Andrews

Dr. Mark Andrews

Mark is a psychologist and statistician whose work lies at the intersection of cognitive science, Bayesian data analysis, and applied statistics. His research focuses on developing and testing Bayesian models of human cognition, with a particular emphasis on language processing and memory. He also works extensively on the theory and application of Bayesian statistical methods in the social and behavioural sciences, bridging methodological advances with real-world research challenges.

Since 2015, Mark has co-led a programme of intensive workshops on Bayesian data analysis for social scientists, funded by the UK’s Economic and Social Research Council (ESRC). These workshops have trained hundreds of researchers in the practical application of Bayesian methods, particularly through R and modern statistical packages.

 

Education & Career
• PhD in Psychology, Cornell University, New York (Cognitive Science, Bayesian Models of Cognition)
• MA in Psychology, Cornell University, New York
• BA (Hons) in Psychology, National University of Ireland
• Senior Lecturer in Psychology, Nottingham Trent University, England

 

Research Focus
Mark’s work centres on:
• Bayesian models of human cognition, especially in language processing and memory
• General Bayesian data analysis methods for the social and behavioural sciences
• Comparative studies of Bayesian vs. classical approaches to inference and model comparison
• Promoting reproducibility and transparent statistical practice in psychological research

 

Current Projects
• Developing Bayesian cognitive models of memory and linguistic comprehension
• Exploring Bayesian approaches to regression, multilevel, and mixed-effects models in psychology and social science research
• Co-leading ESRC-funded workshops on Bayesian data analysis for applied researchers

 

Professional Consultancy & Teaching
Mark provides expert training and advice in Bayesian data analysis for academic and applied research projects. His teaching portfolio includes courses and workshops on:
• Bayesian linear and generalized linear models
• Multilevel and mixed-effects models
• Cognitive modelling with Bayesian methods
• Applied statistics in R for psychologists and social scientists

He is also an advocate of open science and is experienced in communicating complex statistical methods to diverse audiences.

 

Teaching & Skills
• Instructor in Bayesian statistics, time series modelling, and machine learning
• Strong advocate for reproducibility, open-source tools, and accessible education
• Skilled in R, Stan, JAGS, and statistical computing for large datasets
• Experienced mentor and workshop leader at all academic levels

 

Links
University Profile
Personal Page
ResearchGate

Session 1 – 01:20:00 – What is Bayesian Data Analysis?
We will begin with a overview of what Bayesian data analysis is in essence and how it fits into statistics as it practiced generally. Our main point here will be that Bayesian data analysis is effectively an alternative school of statistics to the traditional approach, which is referred to variously as the classical, or sampling theory based, or frequentist based approach, rather than being a specialized or advanced statistics topic. However, there is no real necessity to see these two general approaches as being mutually exclusive and in direct competition, and a pragmatic blend of both approaches is entirely possible.

Session 2 – 01:20:00 – Introducing Bayes’ rule.
Bayes’ rule can be described as a means to calculate the probability of causes from some known effects. As such, it can be used as a means for performing statistical inference. In this section of the course, we will work through some simple and intuitive calculations using Bayes’ rule. Ultimately, all of Bayesian data analysis is based on an application of these methods to more complex statistical models, and so understanding these simple cases of the application of Bayes’ rule can help provide a foundation for the more complex cases.

Session 3 – 01:20:00 – Bayesian inference in a simple statistical model.
In this section, we will work through a classic statistical inference problem, namely inferring the number of red marbles in an urn of red and black marbles, or equivalent problems. This problem is easy to analyse completely with just the use of R, but yet allows us to delve into all the key concepts of all Bayesian statistics including the likelihood function, prior distributions, posterior distributions, maximum a posteriori estimation, high posterior density intervals, posterior predictive intervals, marginal likelihoods, Bayes factors, model evaluation of out-of-sample generalization.

Session 4 – 02:00:00 – Bayesian analysis of normal models.
Statistical models based on linear and normal distribution are a mainstay of statistical analyses in general. They encompass models such as linear regression, Pearson’s correlation, t-tests, ANOVA, ANCOVA, and so on. In this section, we will describe how to do Bayesian analysis of normal linear models, focusing on simple examples. One of the aims of this section is to identify some important and interesting parallels between Bayesian and classical or frequentist analyses. This shows how Bayesian and classical analyses can be seen as ultimately providing two different perspectives on the same problem.

Session 5 – 02:00:00 – Markov Chain Monte Carlo (MCMC) methods.
The previous section provides a so-called analytical approach to linear and normal models. This is where we can calculate desired quantities and distributions by way of simple formulae. However, analytical approaches to Bayesian analyses are only possible in a relatively restricted set of cases. On the other hand, numerical methods, specifically Markov Chain Monte Carlo (MCMC) methods can be applied to virtually any Bayesian model. In this section, we will re-perform the analysis presented in the previous section but using MCMC methods. For this, we will use the brms package in R that provides an exceptionally easy to use interface to Stan.

Session 6 – 04:00:00 – Bayesian linear models.
We begin by covering Bayesian linear regression. For this, we will use the brm command from the brms package, and we will compare and contrast the results with the standard lm command. By comparing and contrasting brm with lm we will see all the major similarities and differences between the Bayesian and classical approach to linear regression. We will, for example, see how Bayesian inference and model comparison works in practice and how it differs conceptually and practically from inference and model comparison in classical regression. As part of this coverage of linear models, we will also use categorical predictor variables and explore varying intercept and varying slope linear models.

Session 7 – 02:00:00 – Extending Bayesian linear models.
Classical normal linear models are based on strong assumptions that do not always hold in practice. For example, they assume a normal distribution of the residuals, and assume homogeneity of variance of this distribution across all values of the predictors. In Bayesian models, these assumptions are easily relaxed. For example, we will see how we can easily replace the normal distribution of the residuals with a t-distribution, which will allow for a regression model that is robust to outliers. Likewise, we can model the variance of the residuals as being dependent on values of predictor variables.

Session 8 – 02:00:00 – Bayesian generalized linear models.
Generalized linear models include models such as logistic regression, including multinomial and ordinal logistic regression, Poisson regression, negative binomial regression, zero-inflated models, and other models. Again, for these analyses we will use the brms package and explore this wide range of models using real world data-sets. In our coverage of this topic, we will see how powerful Bayesian methods are, allowing us to easily extend our models in different ways in order to handle a variety of problems and to use assumptions that are most appropriate for the data being modelled.

Session 9 – 04:00:00 – Multilevel and mixed models.
In this section, we will cover the multilevel and mixed effects variants of the regression models, i.e. linear, logistic, Poisson etc, that we have covered so far. In general, multilevel and mixed effects models arise whenever data are correlated due to membership of a group (or group of groups, and so on). For this, we use a wide range of real-world data-sets and problems, and move between linear, logistic, etc., models are we explore these analyses. We will pay particular attention to considering when and how to use varying slope and varying intercept models, and how to choose between maximal and minimal models. We will also see how Bayesian approaches to multilevel and mixed effects models can overcome some of the technical problems (e.g. lack of model convergence) that beset classical approaches.

Testimonials

PRStats offers a great lineup of courses on statistical and analytical methods that are super relevant for ecologists and biologists. My lab and I have taken several of their courses—like Bayesian mixing models, time series analysis, and machine/deep learning—and we've found them very informative and directly useful for our work. I often recommend PRStats to my students and colleagues as a great way to brush up on or learn new R-based statistical skills.

Rolando O. Santos

PhD Assistant Professor, Florida International University

Courses attended

SIMM05, IMDL03, ITSA02, GEEE01 and MOVE07

Testimonials

PRStats offers a great lineup of courses on statistical and analytical methods that are super relevant for ecologists and biologists. My lab and I have taken several of their courses—like Bayesian mixing models, time series analysis, and machine/deep learning—and we've found them very informative and directly useful for our work. I often recommend PRStats to my students and colleagues as a great way to brush up on or learn new R-based statistical skills.

Rolando O. Santos

PhD Assistant Professor, Florida International University

Courses attended

SIMM05, IMDL03, ITSA02, GEEE01 and MOVE07

Testimonials

PRStats offers a great lineup of courses on statistical and analytical methods that are super relevant for ecologists and biologists. My lab and I have taken several of their courses—like Bayesian mixing models, time series analysis, and machine/deep learning—and we've found them very informative and directly useful for our work. I often recommend PRStats to my students and colleagues as a great way to brush up on or learn new R-based statistical skills.

Rolando O. Santos

PhD Assistant Professor, Florida International University

Courses attended

SIMM05, IMDL03, ITSA02, GEEE01 and MOVE07

Frequently asked questions

Everything you need to know about the product and billing.

When will I receive instructions on how to join?

You’ll receive an email on the Friday before the course begins, with full instructions on how to join via Zoom. Please ensure you have Zoom installed in advance.

Do I need administrator rights on my computer?

Yes — administrator access is recommended, as you may need to install software during the course. If you don’t have admin rights, please contact us before the course begins and we’ll provide a list of software to install manually.

I’m attending the course live — will I also get access to the session recordings?

Yes. All participants will receive access to the recordings for 30 days after the course ends.

I can’t attend every live session — can I join some sessions live and catch up on others later?

Absolutely. You’re welcome to join the live sessions you can and use the recordings for those you miss. We do encourage attending live if possible, as it gives you the chance to ask questions and interact with the instructor. You’re also welcome to send questions by email after the sessions.

I’m in a different time zone and plan to follow the course via recordings. When will these be available?

We aim to upload recordings on the same day, but occasionally they may be available the following day.

I can’t attend live — how can I ask questions?

You can email the instructor with any questions. For more complex topics, we’re happy to arrange a short Zoom call at a time that works for both of you.

Will I receive a certificate?

Yes. All participants receive a digital certificate of attendance, which includes the course title, number of hours, course dates, and the instructor’s name.

When will I receive instructions on how to join?

You’ll receive an email on the Friday before the course begins, with full instructions on how to join via Zoom. Please ensure you have Zoom installed in advance.

Do I need administrator rights on my computer?

Yes — administrator access is recommended, as you may need to install software during the course. If you don’t have admin rights, please contact us before the course begins and we’ll provide a list of software to install manually.

I’m attending the course live — will I also get access to the session recordings?

Yes. All participants will receive access to the recordings for 30 days after the course ends.

I can’t attend every live session — can I join some sessions live and catch up on others later?

Absolutely. You’re welcome to join the live sessions you can and use the recordings for those you miss. We do encourage attending live if possible, as it gives you the chance to ask questions and interact with the instructor. You’re also welcome to send questions by email after the sessions.

I’m in a different time zone and plan to follow the course via recordings. When will these be available?

We aim to upload recordings on the same day, but occasionally they may be available the following day.

I can’t attend live — how can I ask questions?

You can email the instructor with any questions. For more complex topics, we’re happy to arrange a short Zoom call at a time that works for both of you.

Will I receive a certificate?

Yes. All participants receive a digital certificate of attendance, which includes the course title, number of hours, course dates, and the instructor’s name.

Still have questions?

Can’t find the answer you’re looking for? Please chat to our friendly team.

×

Tickets

The numbers below include tickets for this event already in your cart. Clicking "Get Tickets" will allow you to edit any existing attendee information as well as change ticket quantities.
BADAPR Recorded
BADAPR Recorded
£ 350.00
Unlimited
£350.00
2nd May 2036 - 4th May 2036
Recorded, United Kingdom
Planet